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SuTlary

An infinite thick-walled pipe contains, and is surrounded by, an
inviscid fluid. The displacements of the pipe's wall satisfy the exact
linear equations of elasticity, and the interior and exterior fluids
satisfy the scalar Helmholtz wave equation. The differential equations
are solved by means of Fourier transforms to give the dispersion relation

*connecting frequency with axial and circumferential wavenubers. The
dispersion relation is solved numerically to give examples of 'real'
axial wavenumber versus frequency plots for selected circumferential
harmnics. --
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LIST OF SYMBOLS

Sr, , z) cylindrical coordinates

Ur (r,o,z), uL, uz  radial, tangential and axial displacements

u (n,a,r), etc Fourier transforns of displacementsr

na circumferential harmonic number, axial wavenunrrer

Trr, Tr*I T rz stresses in pipe wall

w radian frequency of vibration, =2rf

a, b inner and outer radius of pipe wall

XV LarrA elastic constants

kI, k elastic wavenumbers, w/c and w/c
1 s 1s

c1  velocity of longitudinal wave, = v/CX+2pf/pl

c s velocity of shear wave, = V(IP)

Yl /(k2 - a 2 ) Im(y 1)>O

y V(k2- 2) Im(ys)>O

pe(rsz), p(r,oz) exterior and interior fluid pressures

Pe.P. e 'c i fluid densities and sound velocities

ke, ki  fluid wavenumbers, u/ce and u/ci

/(k2-cx2 ) Im(y >0
ee e

y /(k2-a2 ) Im(yi)>0

3n' J,' Yn' Y' Bessel functions and derivatives

Hn 1 H Hankel functions, Jn+iYn, J'+iY'

n nn n n n
IM IiMI a matrix, i rows and j columns
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INTRODUCTION

Interpretation of the vibration and sound radiation of fluid-filled
pipes is facilitated greatly by the availability of axial wavenurber
versus frequency plots. Fuller and Fahy [11 discuss the physical signi-
ficance of the real and complex branches of the wavenunber-frquency
plots of fluid-filled pipes. Walter [2] uses plots of the real branches
to demonstrate that the maximum responses of an air-filled pipe wall
occur at frequencies at which the in-vacuo pipe and rigid-walled duct
rude wavenurber-frequency plots cross each other. James [31 shows that
the sound radiation from fluid-filled pipes is better understood when the
real branches of the wavenuber-frequency plots are available.

Each of the above authors uses a shell theory [4] to describe the
pipe wall vibrations. However, much of the pipework in industrial use is
thick-walled, so it is necessary to compute wavenunber-frequency plots
based on exact linear elastic theory in order to check the validity of
shell theory. Kumar (5] studies the real and complex wavenumber plots of
fluid-filled pipes using the exact theory for axisynmetric vibrations.
Gazis [91 uses exact linear theory to investigate three-dimensional free-
wave propagation in hollow elastic cylinders.

Contained in this report is the mathematical analysis needed to
obtain the dispersion relation of a thick-walled pipe that contains and
is surrounded by a fluid. Exact linear elastic theory for an isotropic
circular pipe undergoing arbitrary motion is used. The purpose of the
work is twofold. First, it provides the initial stage in the analysis of
wave-propagation and sound radiation by layered pipes, corresponding to
previous ork on layered media [6]. Secondly, it is a computational tool
for studying free-wave propagation in fluid-filled thick pipes and it is
particularly valuable for making comparisons with shell theory.

2. PROBLEM FORMULATION

An infinite thick-walled circular pipe contains and is surrounded by
acoustic fluids of possibly different density and sound velocity.
Figure 1 shows the geometry of interest. The time harmonic factor
exp(-iwt) is omitted from all equations.

It is assumed that the displacements (ur, u,,uz) of the pipe are

governed by the exact linear equations of elasticity. It is convenient
to represent these displacements as Fourier transforre1 i

u r (r,0,z) [cos(no) ur(nar)

u 4(r,o,z) = T) sin(no) exp(iaz) u (nar) da (2.1)
0n =

o _

ucrz) os(n4 J Luz(n,,r)

with ur and uz having even dependence upon the circumferential

coordinate 0 and u4  having odd dependence.
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The equations of elasticity are coupled in term of the variables
ur, uf and uz, so it is desirable to express these displacerents in

terns of unknowns (F,G,H) which satisfy wave-equations. These functions
are also represented by Fourier transforms

H(r,..z) cos(nf) -- H(n,a,r)

The stresses in the pipe's wall have the Fourier transforms

T rr(rOz) 1 cos(no) Frr(n,a,r)

(r,,z) = (1/2)no ::sin(n) exp(iaz) T (n,a,r) da (2.3)

and the exterior and interior fluids have the transforr

p(r, ,z) = (1/21) Z cos(no) f exp(iaz)p(n,a,r)di (2.4)
n=o -O

The Fourier transform representations facilitate solution of the
wave-equations and enable relations between unknowns to be presented in
'spectral' form. The variable a is the axial wavenunber, and n is the
nunber of wavelengths around the circumference.

The procedure for solution is as follows. First, matrix relations
between the surface spectral stresses and displaceents are obtained,
Section 3. Secondly, the spectral pressures due to the interior and
exterior fluids are expressed in terns of the spectral displacenents of
the inner and outer surface respectively, Section 4. Finally, the pipe-
fluid boundary conditions are applied and the conditions necessary for
free-wave propagation are established, Section 5.

3. THE ELASTIC LAYER

Figure I shows a section through a pipe whose inner boundary is r=a
and whose outer boundary is r-b. The surfaces are subject to prescribed
normnal and tangential spectral stresses

b b b a a a IT
I 'T [n,ar)] T ":rT'r4 "T rz A rr Tr trz (3.1)
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which produce spectral surface displacements

b b b a a a]T
[u(na)]=[u.'ufuzu r, UU z  (3.2)

A relation is required between the surface spectral stresses and
disp lacements.

The linear elastic equations of motion [ 7 1
[X+ij)grad~div u] +pVu2=pa2u/ t 2  (3.3)

are reduced to three wave equations

V2F+k2F=O V21+k2G=O , V2H+k2H=O (3.4)
1 ' s

by neans of the substitutions

u r= aF/ar+C1/r)aG/a -a2H/araz

uO = (1/r)aF/3a-aG/Dr-(l/rZ 2H/; az (3.5)

u = F/az~a2H/ar2 +(l/r) aH/ar+( 1/r 2 ) a2H/a@2=F/az+V2H-a2H/az2

Substituting the Fourier transform representations of F, G and H
into the equations (3.4) gives, after integrating the resulting equations,
tht spectral equations

F(n,,r) = 3n (ylr)A1 +Yn(ylr)A2

(n,ar) = J n(Ys) A3 +Yn(ysr)A4  (3.6)

H(n,,r) = 3n (yr)A5 +Yn(YsrHA 6

The spectral displacements are obtained from equations (3.5) and
(3.6) as

ur(n,ar) = Yi Jn1 (Yr)A1 + YiYn'iYr)A2

+(n/r)Jn (ysr)A3 + n/r)Yn (Ysr)A4

-iQYs [ Ys H
A
5 - iaYY (yr) A6

u (n,c,r) -C(n/rJn C(iyr)A I - (n/r)Yn ylr)A2

- y3n(yr HA 3 - YsY'n(YsrA 4  (3.7)

5 n s6
+(in/r)J n ys HA 5  + (ian/r)Yfn(Ysr OA 6
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u z (n, a, r) iaJ (y~r)A, + anYlA2

+(a2-k2)j (Y rHA + (c2-k2)y (Y rHA

The stress-displacerent relations necessary for subsequent analysis
are

Ir= Xdjj.v u + 2iiau /Br

T = vi (au/3r - (1/r)u, + (I/r)au r W(38

T = (au /3z + 3u /ar)

which can be represented spectrally, after sirplifying by the use of the
Bessel function differential equation

z Z''(zj+z'Cz)+(z 2-n2)Z (z)=cJ,n n n

as
( n,ct,r] [2vy2 3'toY r)-Xk2 J (y r)JA

r'r 1ln 1 1ln 1

+ 2PY 2Y''(Y r)-Xk2Y (Y HI
1ln 1 ln 1 2

+ C2vn/r2)IIY rJ'(Y r) -J (Y AflA
s n s n s 3

+ (2.ln/r2)[y srY'(y r) HY n(yr)1HA 4

- 2imviY 2J''(Ysr)A

- 2ia'pY2 Y' I(Ysr)As n ~ 6

'r(n,a,r) =(2nv/r9)[-yircJ (y~r) J(Ylr)lAi

" (2n1I/r2)( -Y lrY'(Y 1r)+Y n(Y AA

" (jj/r 2 )[2y 'rJnl(ysr)+C'y2 r2 -2n 2) (y 01 A
s s )n s 3(3.9)

" (v'/92)[2y rY'I(Ysr) +(y2 r2 -2n2  (- Cr)lA
ss s )n s4

" (2iciIjn/r)1V r~J'(yrr) -jn('sr) A5

" (2icI1n/r)y srYn'(Ysr) -Yn (Ysr)] A6
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IF.

Trz (n,a,r) =2ipYl~n(Ylr)Aj

+ 2iYlYn' (-Y Ir)A2

+ (ir 3 sr)A 3
" (ictln/r)Y (Y OA

n s 4" (i c&In/r) Yn ( fsr ) A 4

* Y (20-k)J'(Ysr)A5

+ P (2a 2 -k)Y( r) A6

The boundary conditions

T (n,c,b) = Tbrr rr

T (n,a,b) = b

Trz (ab)=Tbrz

(n,c,a) = Tarr

T (n, ,a) = ar*
a

Trz (n,,a) = rz

yield the matrix equation

[P(n,a)1[A(n,a)1 = [T(n,)] (3.10)
6*6 6*1 6*1

and the spectral displacements equations (3.7) evaluated at r=b and r=a
give the matrix equation

[R(n,c)][A(n,a) = [u(n,a)] (3.11)
6*6 6*1 6*1

The elements of the matrices [P(n,a)] and [ R(n,a)] are given in
Appendix A.

Equations (3.10) and (3.11) may be used to eliminate [A(n,a)] to
give the formula

[P(n,a)]IR(n,)1 [u(n,a)] - r(n,i)] (3.12)
6*6 6*6 6*1 6*1
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which is of particular usefulness when analysing layered redia by the

finite elermnt method [ 6 ].

4. INTERIOR AND EXTERIOR FLUIDS

(a) Interior Fluid

The linear acoustic equation [81

v 2 p i = (1/c2 )92 pi/a ta (4.1)

is solved by replacing pi(r, ,z) by its Fourier transform

representation and then integrating the resulting equation. Its
spectral solution is

Pi(n,a,r) = Bin (yir) + B2Yn(yir) (4.2)

The finiteness of pi(n,a,r) at the origin r-O requires B2 to be

set to zero. The relation between the fluid pressure and displacement,
viz

api/arp i 2 ur (4.31

evaluated at the boundary r-a enables the pressure to be expressed

in term of the boundary displacement u r(n,c,a) as

Pi(n,a,r) = pi ZUr(n,a,a) Jn (yir)/yiJnC(ia) (4.4)

(b) Exterior Fluid

The solution of the wave-equation relevant to outgoing waves is

[8r

Pe n,a,r) = B3 Hn (Yr) (4.5)

The boundary condition equation (4.3) evaluated at i-b enables the
pressure to be expressed in term of the displacement u r(n,a,b) as

pe(n,a,r) =  pe Ur(n,c,b)Hn (Yer)/YeHn'(yb) (4.6)

5. PIPE-FLUID BOUNDARY CONDITIONS

The boundary conditions to be applied at the interface between an
elastic solid and an inviscid fluid are the continuity conditions of dis-

placernent and stress in the direction normal to the interface. The
equations (4.4) and (4.6) reflect continuity of displacement and the
continuity of normal stress in the absence of external forces on the
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pipe's surfaces is given by the equation

[P(na)1[A(na)] = [-pe(na,b),O,0,-pi(n,a,a),0,O]T  (5.1)
6*6 6*1 6 1

which may be rearranged by making use of equations (4.4), (4.6) anc
(3.11) as

[P(n,a)+(n,A)I[ A(n,a) = 0 (5.2)
6*6 6*1

The elements of [ Q(n,a) ] are given in Appendix A.

The system of homogeneous linear equations (5.2) has a non-trivial
solution only if the determinant of the coefficients vanishes. For given
values of n and w, there will be real and conplex values of a at
which the determinant vanishes. Plots of these values versus frequency
are called wavenumber-frequency or dispersion plots. The real branches
alone are of interest herej they are the wavenumbers at which free-waves
propagate. The complex, or purely imaginary branches describe the
evanescent waves whose effect decreases exponentially with distance. When
an exterior fluid is present, there will be no real branches when a<k
(except for pure torsion) due to energy loss in the form of acoustic
radiation [8].

6. NUMERICAL RESULTS

Fortran programs have been written to compute and plot the real
branches of the axial wavenumber versus frequency plots. A root is
found simply by stepping through a range of a-values until a sign change
occurs in the determinant: it is refined to a selected accuracy by
repeated interval halving. Care must be taken with the Bessel function
comrputations otherwise spurious roots may occur. Chosen SI constants are:

Steel: E = 19.5EI0 a = 0.29 p = 7700.0
Water: p = 1000.0 c = 1500.0

Figure 2 shows the real branches of a water-filled pipe whose inner
and outer radii are 0.2096m and 0.2350m respectively. The frequency
range (2.8 times 'ring' frequency) and thickness to mean radius ratio
(0.114) are sufficiently small enough to allow shell modes alone in the
pipe's wall. The physical interpretation of the plots is discussed
elsewhere I }1 The plots are compared with those obtained from a shell
theory 131. The significant differences at the higher frequencies occur
when the waves are close to fluid-type waves, they are due to the
assumption, in [31, that the fluid radius is equal tc the mean radius of
the shell.

Figure 3 shows wavenurber frequency plots of an in-vacuo pipe whose
inner and outer radii are 0.10m and 0.20m respectively. The branches
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labelled 4-10 involve 'thickness vibrations' of the pipe's wall. The
plots for circumferential harmonics 1 and 2 are consistent with those
obtained by Gazis [9 1 who discusses the nature of the wavenurrber farilies.
The plot for n=O has many features in conmrun with a plot obtained for a
0.10m thick plate that has zero wavenurrber for the anti-plane strain
branch - unpublished work arising from [6]. The curious behaviour of the
branch labelled 6, for n=O and 1, has not been adequately explained.
It is also present in plate wavenunber plots.
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A PP E NDI1X A

The Matrix [p(ncc]

p1=2 1 y 2 j''(Ylb) - k 2 j (Y b)
in, 1 in 1

2PYY''('r b) - Xk'Y( b)
P12 2  1 n 1 in 1

P13 = (2u'n/b 2 )c Y bJ3'Yb) - Jn (Y sb)]

P14 =(2u.n/b 
2)IIy bYn'Ysb] - Yn flYsb)1

p1  -2 ia y 
2 1J''fYsb)

Pissn

=-2iaily 2Y''(Y b)
P16s n s

P21 = C2ni'/b2 )[jn yb) - yb3n ('flb)1

P22 = f2ni/b2)[yn (,(y b) - y 1bY'f-lyb)]

p23= l1/b
2)(2y bJ'flysb) + fy2b2 - 2n2). fysb)]

n2 s S )n s

p2  =flu/b
2 )l2-y bY'fl(ys) + fly2 b 2 - 2n2 Y (-ysb)

n2 s s )ns

P25 ictpn/b 2 )[by SJ'fy sb) - J fl(y sb)1

p2 =f2icivn/b
2)t by Y'f(y b) - Y fly b)l

P6s n s n s

P31 =2iap~y 12n(-ylb)

P-3 2ialiy Y'( ylb)

P3 3 = ficnip/b).J n(y sb)

p34  ficnl/b)Yn (Y sb)

p35  iy~(2ot
2 - k2Vj'Cy b)

P35 "ss n s

* p~ i~y(2a2 - k2)y~Cysbl

The remaining rows, 4, 5 and 6, arm obtained by setting b-a in

rows 1, 2 and 3.
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The Matrix R(n,a) l

ii y1 J(y 1 b) r12 * YYn'(YI b )

r13 = (n/b]Jn (ysb) r14 = (n/b)Y n(Y b)

r15  jysn sb )  r =-iIsYn(Ysb)
i s (Y16 sn

r2 -(n/b)J n (Y 1b )  r2 = -(n/b)Y n(Y b)

r 2 3 =- J'(Y b) r 2 4  -Y Y'(Ysb)
23 -s n s r4 s n s

25= (ian/b)J n(Y sb) r26 (ian/b)Yn(Ysb)

r3 1  iajl(yb) r32 iaY(1b)

r33 =0 r34  0

r35 ( n2-k2)j (Yb) r = (Q2-k2 )Y (y b)

35 Sc2 k) ny b 36 nS

The remaining rows, 4, 5 and 6, are obtained by setting ba in
rows 1, 2 and 3.

The Matrix l0(n,,i)]

The elemfents of [ Q(n,a)] are identically zero, excepting the
following

C11 C er11  012 Ce r12 Q13 = Cel'13

Q14 = Cer 1 4  Q15 = Cer 1 5  Q16 C e=rl6

Q41 = Cir41 Q42 = Cir42 04 3  Cir 4 3

Q44 C ir44 Q45 = ir45 046 C r4 6

where Ce = p e W2H n (y eb)/Y e H,(y b)

C i  piw2 3n (yi a ) / y i J'(yia)

" 16"



FIG. I SECTION THROUGH PIPE
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